Psychobiology of aggression and violence
Psicobiología de la agresión y la violencia
Main Article Content
The present papers shows the review and analysis of different investigations carried out by multiple authors who have contributed valuable discoveries for the understanding of the aggressive behaviors and the violent behaviors of human beings. Aggression and violence are quite complex behaviors that, in moderate doses, can have an adaptive function in demanding environmental environments that pose challenges for the survival of the individuals. This way, aggression and violence could be considered as part of the same continuous dimension (Vassos, 2014) . Different psychobiological factors converge and interact within the framework of causes and consequences regarding aggression and violence, such as genetic factors (genes and heredity), the brain neurochemistry (neurotransmitters and hormones), subcortical structures (hypothalamus, amygdala, cingulate cortex Anterior, fasciculus uncinate), the performance of the prefrontal cortex and executive functions (orbitofrontal cortex, ventromedial cortex, dorsolateral cortex). We cannot leave aside the interaction of the aforementioned factors with the interaction and influence of environmental, psychosocial and cultural factors in the manifestation of violent acts or behaviors in human beings.
Downloads
Publication Facts
Reviewer profiles N/A
Author statements
- Academic society
- Bogotá: Corporación Universitaria Iberoamericana
- Publisher
- Bogotá: Corporación Universitaria Iberoamericana
Article Details
Alcázar, M. A. (2011). Patrones de conducta y personalidad antisocial en adolescentes. La perspectiva biopsicosociocultural: El Salvador México y España. Berlín: Editorial Académica Española.
Anderson, N. E. y Kiehl, K. A. (2012). The psychopath magnetized: insights from brain imaging. Trends in Cognitive Sciences, 16, 52–60, http://dx.doi.org/10.1016/j.tics.2011.11.008 DOI: https://doi.org/10.1016/j.tics.2011.11.008
Archer, J. (2009). The nature of human aggression. International Journal of Law and Psychiatry, 32, 202–208, http://dx.doi.org/10.1016/j.ijlp.2009.04.001 DOI: https://doi.org/10.1016/j.ijlp.2009.04.001
Barlow, D. H., Allen. L. B. & Choate. M. L. (2004). Toward a Unified Treatment for Emotional Disorders.Behavior Therapy, 35, 205 – 230. DOI: https://doi.org/10.1016/S0005-7894(04)80036-4
Bortolato, M., Pivac, N., Seler, D. M., Perkovic, M. N., Pessia, M. y Di Gio- vanni, G. (2013). The role of the serotoninergic system at the interface of aggression and suicide. Neuroscience, 236, 160–185, http://dx.doi.org/10.1016/j.neuroscience.2013.01.015 DOI: https://doi.org/10.1016/j.neuroscience.2013.01.015
Brain, P.F., Olivier, B., Mos,J., Benton, D., Bronstein, P.M. (1998). Multidisciplinary studies on aggression. Swansea, University of Swansea Press.
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., Poulton, R. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386–389, http://dx.doi.org/ 10.1126/science.1083968 DOI: https://doi.org/10.1126/science.1083968
Cima, M., Raine, A., Meesters, C. y Popma, A. (2013). Validation of the Dutch Reactive Proactive Questionnaire (RPQ): differential correlates of reactive and proactive aggression from childhood to adulthood. Aggressive Behaviour, 39, 99–113, http://dx.doi.org/10.1002/ab.21458 DOI: https://doi.org/10.1002/ab.21458
Coccaro, E. F., Fanning, J. R., Phan, K. L. y Lee, R. (2015). Serotonin and impulsive aggression. CNS Spectrums, 20, 295–302, http://dx.doi.org/10.1017/S1092852915000310 DOI: https://doi.org/10.1017/S1092852915000310
Conway, C. C., Keenan-Miller, D., Hammen, C., Lind, P. A., Najman, J. M. y Brennan, P. A. (2012). Coaction of stress and serotonin transporter genotype in predicting aggression at the transition to adulthood. Journal of Clinical Child &. Adolescent Psychology, 41, 53–63, http://dx.doi.org/10.1080/15374416.2012.632351 DOI: https://doi.org/10.1080/15374416.2012.632351
Duke, A. A., Bègue, L., Bell, R. y Eisenlohr-Moul, T. (2013). Revisiting the serotonin-aggression relation in humans: A meta-analysis. Psychological Bulletin, 139, 1148–1172, http://dx.doi.org/10.1037/a0031544 DOI: https://doi.org/10.1037/a0031544
Eisenberg, N., Hofer, C., Vaughan, J., Effortful. (2007). Control and its socioemotional consequences. See Gross, 287–306.
Eslinger, P. J. y Damasio, A. R. (1985). Severe disturbance of higher cognition after bilateral frontal lobe ablation: patient EVR. Neurology, 35, 1731–1741, http://dx.doi.org/10.1212/WNL.35.12.1731 DOI: https://doi.org/10.1212/WNL.35.12.1731
García-Molina A, Tirapu-Ustárroz J, Luna-Lario P, Ibáñez J, Duque P. (2010). ¿Son lo mismo inteligencia y funciones ejecutivas?. Revista de Neurología, 50, 738-46. DOI: https://doi.org/10.33588/rn.5012.2009713
Gil-Verona, J., Pastor, J., De Paz, F., Barbosa, M., Macias, J., Maniega, M., Rami-Gonzalez L., Boget, T., & Picornell I. (2002). Psicobiología de las Conductas Agresivas. Anales de Psicología. 19(2), 293-303
Glenn, A. L. y Raine, A. (2014). Neurocriminology: implications for the punishment, prediction and prevention of criminal behaviour. Nature Reviews Neuroscience, 15,–64, http://dx.doi.org/10.1038/nrn3640 DOI: https://doi.org/10.1038/nrn3640
Ghashghaei, H. T., Hilgetag, C. C. y Barbas, H. (2007). Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. Neuroimage, 34, 905–923, http://dx.doi.org/10.1016/j.neuroimage.2006.09.046 DOI: https://doi.org/10.1016/j.neuroimage.2006.09.046
Gonzáles, G. y Matute, E. (2013). Cerebro y Drogas. México: Manual Moderno.
Gronde, T., Kempes, M., van El, C., Rinne, T. y Pieters, T. (2014). Neurobiological correlates in forensic assessment: A systematic review. Plos One, 9(10), e110672, http://dx.doi.org/10.1371/journal.pone.0110672 DOI: https://doi.org/10.1371/journal.pone.0110672
Hoaken, P., y Stewart, S., (2003). Drugs of abuse and the elicitation of human aggressive behavior. Addictive Behaviors. 28, 1533-1554 DOI: https://doi.org/10.1016/j.addbeh.2003.08.033
Hornak, J., Bramham, J., Rolls, E. T., Morris, R. G., O’Doherty, J., Bullock, P. R. y Polkey, C. E. (2003). Changes in emotion after circumscribed surgical lesions of the orbitofrontal and cingulate cortices. Brain, 126, 1691–1712, http://dx.doi.org/10.1093/brain/awg168 DOI: https://doi.org/10.1093/brain/awg168
Kandel, E., Schwartz, J., y Jessel,T.M. (Eds.) (2001). Principios de neurociencia, 4 ed. México: McGrawHill Interamericana.
Klumpers, F., Morgan, B., Terburg, D., Stein, D. J. y van Honk, J. (2015). Impaired acquisition of classically conditioned fear-potentiated startle reflexes in humans with focal bilateral basolateral amygdala damage. Social Cognitive and Affective Neuroscience, 10, 1161–1168, http://dx.doi.org/10.1093/scan/nsu164 DOI: https://doi.org/10.1093/scan/nsu164
Mas, M. (1994). Correlatos biológicos de la violencia. En S. Delgado (Dir.), Psiquiatría Legal y Forense (pp. 1245-1264). Madrid: Colex.
Meyer-Lindenberg, A., Buckholtz, J., Kolachana, B., Hariri, A., Pezawas, L., Blasi, G., ... Weinberger, D. (2006). Neural mechanisms of genetic risk for impulsivity and violence in humans. PNAS, 103 (16), 6269-6274. DOI: https://doi.org/10.1073/pnas.0511311103
Moyer, K. E. (1976). The Psychology of Aggression. New York: Harper & Row
Moffitt, T. E. (2006). A review of research on the taxonomy of life-course persistent versus adolescence-limited antisocial behavior. In F. T. Cullen, J. P. Wright, & K. R. Blevins, Taking stock: the status of criminological theory. (pp. 277-311). New Brunswick, N.J.: Transaction Publishers. DOI: https://doi.org/10.4324/9781315130620-11
Murteira Morgado, A. & da Luz Vale Dias, M. (2014) Personality and gender: what do they tell us about adolescent Antisocial behaviour? International Journal of Developmental and Educational Psychology, 1(1) 417-425 DOI: https://doi.org/10.17060/ijodaep.2014.n1.v1.390
Nieuwenhuys, R., Voogd, J. y van Huijzen, C. (2009). El Sistema Nervioso Central Humano. Madrid: Editorial Médica Panamericana. DOI: https://doi.org/10.1007/978-88-470-1140-3
Ng, Y. T., Hastriter, E. V., Wethe, J., Chapman, K. E., Prenger, E. C., Priga- tano,
G. P., Kerrigan, J. F. (2011). Surgical resection of hypothalamic hamartomas for severe behavioral symptoms. Epilepsy & Behavior, 20, 75–78, http://dx.doi.org/10.1016/j.yebeh.2010.10.027 DOI: https://doi.org/10.1016/j.yebeh.2010.10.027
Ortega, J., y Alcázar, M.Á. (2016). Neurobiología de la agresión y la violencia. Anuario de Psicología Jurídica, http://dx.doi.org/10.1016/j.apj.2016.03.001 DOI: https://doi.org/10.1016/j.apj.2016.03.001
Pape, L. E., Cohn, M. D., Caan, M. W. A., Van Wingen, G., Van Den Brink, W., Veltman, D. J. y Popma, A. (2015). Psychopathic traits in adolescents are associated with higher structural connectivity. Psychiatry Research: Neuroimaging, 233, 474–480, http://dx.doi.org/10.1016/j.pscychresns.2015.07.023 DOI: https://doi.org/10.1016/j.pscychresns.2015.07.023
Patrick, C. J. (2015). Physiological correlates of psychopathy, antisocial personality disorder, habitual aggression, and violence. Currents Topics in Behavioral Neuros-cience, 21, 197–227, http://dx.doi.org/10.1007/7854 DOI: https://doi.org/10.1007/7854_2014_345
Penado, M., Andreu, J. M. y Peña, E. (2014). Agresividad reactiva, proactiva y mixta: análisis de los factores de riesgo individual. Anuario de Psicología Jurídica, 2014, 37–42, http://dx.doi.org/10.1016/j.apj.2014.07.012 DOI: https://doi.org/10.1016/j.apj.2014.07.012
Price, J. L. (2006). Architectonic structure of the orbital and medial prefrontal cortex. En D. H. Zald y S. L. Rauch (Eds.), The Orbitofrontal Cortex (pp. 3–17). Oxford: Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780198565741.003.0001
Price, J. L. (2007). Definition of the orbital cortex in relation to specific connec- tions with limbic and visceral structures and other cortical regions. Annals of the New York Academy of Sciences, 1121, 54–71, http://dx.doi.org/10.1196/ annals.1401.008 DOI: https://doi.org/10.1196/annals.1401.008
Raine, A., Meloy, J. R., Bihrle, S., Stoddard, J., LaCasse, L. y Buchsbaum, M. S. (1998). Reduced prefrontal and increased subcortical brain functioning assessed using positron emission tomography in predatory and affective murderers. Behavioral Sciences and the Law, 16, 319–332, http://dx.doi.org/10.1002/(SICI)10990798(199822)16:3<319::AID-BSL311>3.0.CO;2-G DOI: https://doi.org/10.1002/(SICI)1099-0798(199822)16:3<319::AID-BSL311>3.0.CO;2-G
Rhee, S. & Waldman, I. (2002) Genetic and Environmental Influences on Antisocial Behavior: A Meta-Analysis of Twin and Adoption Studies. Psychological Bulletin (3) 490–529 DOI: https://doi.org/10.1037/0033-2909.128.3.490
Rosell, D. R. y Siever, L. (2015). The neurobiology of aggression and violence. CNS Spectrums, 20, 254–279. DOI: https://doi.org/10.1017/S109285291500019X
Sánchez-Martin, J.R. (2000). Testosterone level may be a marker of conflict behavior in male and female preschool children. Comunicación presentada al XIV world meeting of the International society for research on aggression. IS-5.1 Valencia, Julio. DOI: https://doi.org/10.1037/e552682012-034
Stahl, S. M. (2014). Deconstructing violence as a medical syndrome: mappingpsy-chotic, impulsive, and predatory subtype stomal functioning brain circuits. CNSSpectrums, 19, 357–365, http://dx.doi.org/10.1017/S1092852914000522 DOI: https://doi.org/10.1017/S1092852914000522
Siegel, A. y Douard, J. (2011). Who’s flying the plane: Serotonin levels, aggression and free will. International Journal of Law and Psychiatry, 34, 20–29, http://dx.doi.org/10.1016/j.ijlp.2010.11.004 DOI: https://doi.org/10.1016/j.ijlp.2010.11.004
Siegel, A. y Victoroff, J. (2009). Understanding human aggression: New insights from neuroscience. International Journal of Law and Psychiatry, 32, 209–215, http://dx.doi.org/10.1016/j.ijlp.2009.06.001 DOI: https://doi.org/10.1016/j.ijlp.2009.06.001
Takahashi, A., Quadros, I. M., de Almeida, R. M. M. y Miczek, K. A. (2011). Brain serotonin receptors and transporters: initiation vs. termination of escalated aggression. Psychopharmacology, 213, 183–212, http://dx.doi.org/10.1007/s00213-010-2000-y DOI: https://doi.org/10.1007/s00213-010-2000-y
Teodorovic, S. y Uzelac, B. (2015). Genetic basis of aggression: Overview and implications for legal proceedings. Romanian Journal of Legal Medicine, 23, 193–202, http://dx.doi.org/10.4323/rjlm.2015.193 DOI: https://doi.org/10.4323/rjlm.2015.193
Tranel, D., Bechara, A. y Denburg, N. L. (2002). Asymmetric functional roles of right and left ventromedial prefrontal cortices in social conduct, decisionmaking, and emotional processing. Cortex, 38, 589–612, http://dx.doi.org/10.1016/S0010- 9452(08)70024-8 DOI: https://doi.org/10.1016/S0010-9452(08)70024-8
Valzelli, L. (1983) Psicobiología de la agresión y la violencia. Madrid. Alhambra
Vassos, E., Collier, D. A. y Fazel, S. (2014). Systematic meta-analyses and field synopsis of genetic association studies of violence and aggression. Molecular Psychiatry, 19, 471–477, http://dx.doi.org/10.1038/mp.2013.31 DOI: https://doi.org/10.1038/mp.2013.31
Yanowitch, R. y Coccaro, E. F. (2011). The neurochemistry of human aggression. Advances in Genetics, 75, 151–169, http://dx.doi.org/10.1016/B978-0-12-380858-5.000058 DOI: https://doi.org/10.1016/B978-0-12-380858-5.00005-8