Modelagem do controle de variáveis em um problema de proporcionalidade através de autômatos finitos: Dois estudos de caso
Conteúdo do artigo principal
Este artigo expõe a modelagem, utilizando a técnica de autômatos finitos determinísticos (AFD), do procedimento de
controle de variáveis, por solucionadores de diferentes idades e escolaridades, quando resolvem um problema de
proporcionalidade em uma situação de movimento retilíneo constante. O estudo enquadra-se no contexto de uma
investigação que visa caracterizar a mudança cognitiva na resolução de tarefas de proporcionalidade colocadas através
de software interactivo. Para mostrar o potencial da técnica AFD, está documentada a análise de 2 casos, em termos da
frequência de transição para diferentes formas de utilização do controlo variável.
Downloads
Detalhes do artigo
Aho, A. V, Hopcroft, J. E., & Ullman, J. D. (1988). Estructura de datos y algoritmos. Addison-Wesley.
Alvarado Carrillo, S. (2011). El razonamiento proporcional en la educación primaria: un estudio con alumnos de 6 grado en una escuela pública del distrito federal. Universidad Pedagogica Nacional.
Bullock, M., & Ziegler, A. (1999). Scientific reasoning: Developmental and individual differences. In Individual development from 3 to 12: Findings from the Munich Longitudinal Study (pp. 38–54). Cambridge University Press.
Chen, Z., & Klahr, D. (1999). All Other Things Being Equal : Acquisition and Transfer of the Control of Variables Strategy. Child Development, 70(5), 1098–1120. DOI: https://doi.org/10.1111/1467-8624.00081
Corona Cruz, A., Sanchez Campos, M., González, E., & Slisko, J. (2012). Habilidades cognitivas y la resolución de un problema de cinemática: Un estudio comparativo entre los estudiantes de secundaria, bachillerato y universidad. Latin-American Journal of Physics Education, 6(2), 292–299. http://www.lajpe.org/june12/LAJPE_665_Adrian_Corona.pdf
Croker, S., & Buchanan, H. (2011). Scientific reasoning in a real-world context: The effect of prior belief and outcome on children’s hypothesis-testing strategies. British Journal of Developmental Psychology, 29(3), 409–424. https://doi.org/10.1348/026151010X496906 DOI: https://doi.org/10.1348/026151010X496906
Delgado Reyes, G., Martinez Valdez, J., & Guevara López, P. (2011). Autómatas finitos : su aplicación para describir la trayectoria de un vehículo evasor de obstáculos. Revista de Divulgacion Cientifica y Tecnologica, 16(60), 30–40.
Dengel, A., Buchner, J., Mulders, M., & Pirker, J. (2021). Beyond the horizon: Integrating immersive learning environments in the everyday classroom. Proceedings of 2021 7th International Conference of the Immersive Learning Research Network, ILRN 2021. https://doi.org/10.23919/iLRN52045.2021.9459368 DOI: https://doi.org/10.23919/iLRN52045.2021.9459368
Eichmann, B., Goldhammer, F., Greiff, S., Brandhuber, L., & Naumann, J. (2020). Using process data to explain group differences in complex problem solving. Journal of Educational Psychology, 112(8), 1546–1562. https://doi.org/10.1037/edu0000446 DOI: https://doi.org/10.1037/edu0000446
Escobar Melo, H. A., Abello Correa, R., & Castaño García, J. (2016). Trayectorias de control y covariación de variables como expresión del cambio cognitivo en la solución de un problema. Universitas Psychologica, 15(1), 281–302. https://doi.org/10.11144/Javeriana.upsy15-1.tccv DOI: https://doi.org/10.11144/Javeriana.upsy15-1.tccv
Fischer, A., Greiff, S., & Funke, J. (2017). The history of complex problem solving. In The Nature of Problem Solving: Using Research to Inspire 21st Century Learning (Issue May, pp. 107–121). OECD Publishing. https://doi.org/10.1787/9789264273955-9-en DOI: https://doi.org/10.1787/9789264273955-9-en
Hopcroft, J. E., & Ullman, J. D. (1969). Formal Languages and their Relation to Automata. Addison-Wesley.
Hopcroft, J., Motwani, R., & Ullman, J. (2008). Introducción a la teoría de autómatas, lenguajes y computación (3rd ed.). Pearson Prentice-Hall.
Klahr, D., Chen, Z., & Toth, E. (2001). From Cognition to Instruction to Cognition: A Case Study in Elementary School Science Instruction. In Designing for Science : Implications From Everyday, Classroom, and Professional Settings (pp. 209–250). Lawrence Erlbaum Associates, Inc.
Klahr, D., & Nigam, M. (2004). The equivalence of learning paths in early science instruction: Effects of direct instruction and discovery learning. Psychological Science, 15(10), 661–667. https://doi.org/10.1111/j.0956-7976.2004.00737.x DOI: https://doi.org/10.1111/j.0956-7976.2004.00737.x
Kuhn, D., Iordanou, K., Pease, M., & Wirkala, C. (2008). Beyond control of variables: What needs to develop to achieve skilled scientific thinking? Cognitive Development, 23(4), 435–451. https://doi.org/10.1016/j.cogdev.2008.09.006 DOI: https://doi.org/10.1016/j.cogdev.2008.09.006
Mochón Cohen, S. (2012). Enseñanza del razonamiento proporcional y alternativas para el manejo de la regla de tres. Educación Matemática, 24(1), 133–157. DOI: https://doi.org/10.24844/EM2401.05
Neubert, J. C., Kretzschmar, A., Wüstenberg, S., & Greiff, S. (2014). Extending the Assessment of Complex Problem Solving to Finite State Automata. European Journal of Psychological Assessment, 31(3), 181–194. https://doi.org/10.1027/1015-?‐5759/a000224 DOI: https://doi.org/10.1027/1015-5759/a000224
Osterhaus, C., Koerber, S., & Sodian, B. (2016). Scientific thinking in elementary school: Children’s social cognition and their epistemological understanding promote experimentation skills. Developmental Psychology, 53(3), 450–462. https://doi.org/10.1037/dev0000260 DOI: https://doi.org/10.1037/dev0000260
Piekny, J., & Maehler, C. (2013). Scientific reasoning in early and middle childhood: The development of domain-general evidence evaluation, experimentation, and hypothesis generation skills. British Journal of Developmental Psychology, 31(2), 153–179. https://doi.org/10.1111/j.2044-835X.2012.02082.x DOI: https://doi.org/10.1111/j.2044-835X.2012.02082.x
Puzzella, A., Pandiella, S., Díaz, L., Nappa, N., Alborch, A., & Pandiella, P. (2012). El “Saber Hacer” como Contenido de Aprendizaje. Estudio Exploratorio en una Escuela Secundaria. Revista Electrónica Iberoamericana de Educación En Ciencias y Tecnología, 3(2), 11–31.
Ruiz-Estrada, H., Fuchs-Gómez, O. L., & Raggi Cárdenas, G. (2006). El desarrollo del pensamiento científico de los ingresantes a las licenciaturas de la FCFM-BUAP y su adaptación a los estudios. III Encuentro Participación de La Mujer En La Ciencia.
Schoppek, W., & Fischer, A. (2015). Complex problem solving-single ability or complex phenomenon? Frontiers in Psychology, 6(1), 1–4. https://doi.org/10.3389/fpsyg.2015.01669 DOI: https://doi.org/10.3389/fpsyg.2015.01669
Schwichow, M., Croker, S., Zimmerman, C., Höffler, T., & Härtig, H. (2016). Teaching the control-of-variables strategy: A meta-analysis. Developmental Review, 39, 37–63. https://doi.org/10.1016/j.dr.2015.12.001 DOI: https://doi.org/10.1016/j.dr.2015.12.001
Sodian, B., Zaitchik, D., & Carey, S. (1991). Young Children’s Differentiation of Hypothetical Beliefs from Evidence. Child Development, 62(4), 753–766. https://doi.org/10.1111/j.1467-8624.1991.tb01567.x DOI: https://doi.org/10.1111/j.1467-8624.1991.tb01567.x
Stadler, M., Fischer, F., & Greiff, S. (2019). Taking a closer look: An exploratory analysis of successful and unsuccessful strategy use in complex problems. Frontiers in Psychology, 10(MAY), 1–10. https://doi.org/10.3389/fpsyg.2019.00777 DOI: https://doi.org/10.3389/fpsyg.2019.00777
Tschirgi, J. E. (1980). Sensible Reasoning : A Hypothesis about Hypotheses. Child Development, 51(1), 1–10. DOI: https://doi.org/10.1111/j.1467-8624.1980.tb02502.x
Uribe, C., Quintero, M., & Rodriguez, A. M. (2005). Intervención en el desarrollo cognitivo mediante las ciencias naturales: comparación de dos casos. Enseñanza de Las Ciencias, Perkins 1992, 1–5.
Vanegas, C., Jiménez, L. S., & Puertas, F. A. (2018). Un estudio exploratorio de la covariación proporcional directa a partir de situaciones problema en estudiantes de grado quinto del colegio La Palestina I.E.D. Pontificia Universidad Javeriana.
Wüstenberg, S., Greiff, S., & Funke, J. (2012). Complex problem solving - More than reasoning? Intelligence, 40(1), 1–14. https://doi.org/10.1016/j.intell.2011.11.003 DOI: https://doi.org/10.1016/j.intell.2011.11.003