Evidências empíricas sobre a penetrabilidade cognitiva na percepção visual inicial em humanos
Conteúdo do artigo principal
Com base no referencial teórico sobre as concepções modulares da mente de Fodor (2001) e Pinker (2005), o objetivo deste texto é analisar qualitativamente a força da evidência experimental de uma amostra de artigos publicados entre 2002 e 2017 que sustentam a tese da penetrabilidade cognitiva na percepção visual inicial. O estudo justifica-se pelas implicações que os resultados dessas investigações podem ter para as diferentes concepções de arquitetura mental em funções perceptivas, processamento de informação intra e intermodular e isomorfismo entre arquitetura mental e cerebral. A metodologia utilizada para a realização deste estudo implicou estabelecimento da tese e os critérios de inclusão dos artigos a serem revisados, seleção final dos artigos mais representativos nas subáreas selecionadas, análise da qualidade metodológica e seus resultados, identificação das contribuições específicas de cada estudo para a tese proposta e interpretação e síntese dos achados. Dos 26 artigos revisados sobre o assunto, 7 são relatados e analisados, os quais são considerados representativos de 4 subáreas: penetrabilidade de expectativas, percepção de cores, características faciais e reconhecimento de objetos. Conclui-se que há ampla e sólida evidência convergente (perceptual e neurofisiológica) a favor dos fenômenos penetrativos na visão inicial, o que indiretamente apoiaria a hipótese de Pinker de permeabilidade dos módulos mentais. São feitas recomendações sobre aspectos a serem investigados e variáveis a serem controladas em experimentos sobre o tema.
Downloads
##plugins.generic.pfl.publicationFactsTitle##
##plugins.generic.pfl.reviewerProfiles## Indisp.
##plugins.generic.pfl.authorStatements##
##plugins.generic.pfl.indexedIn##
-
##plugins.generic.pfl.indexedList##
- ##plugins.generic.pfl.academicSociety##
- Bogotá: Corporación Universitaria Iberoamericana
- ##plugins.generic.pfl.publisher##
- Bogotá: Corporación Universitaria Iberoamericana
Detalhes do artigo
Bannert, M. M., & Bartels, A. (2013). Decoding the yellow of a gray banana. Current Biology, 23(22), 2268-2272. doi: https://www.sciencedirect.com/science/article/pii/S0960982213011329 DOI: https://doi.org/10.1016/j.cub.2013.09.016
Bar, M., Kassam, K. S., Ghuman, A. S., Boshyan, J., Schmid, A. M., Dale, A. M., Hämäläinen, M. S., Marinkovic, K., Schacter, D. L., Rosen, B. R., & Halgren, E. (2006). Top-down facilitation of visual recognition. Procedings of the National Academy of Sciences USA, 103, 449-454. doi: https://pubmed.ncbi.nlm.nih.gov/16407167/ DOI: https://doi.org/10.1073/pnas.0507062103
Bitter, D. (2014). Is low-level visual experience cognitively penetrable? En The Baltic international yearbook of cognition, logic and communication (Vol. 9) (pp. 1-26). doi: https://www.researchgate.net/publication/273289064_Is_Low-Level_Visual_Experience_Cognitively_Penetrable DOI: https://doi.org/10.4148/1944-3676.1082
Boyer, P. & Barret, C. (2015). Intuitive ontologies and domain specifity. En D. M. Buss, The handbook of evolutionary psychology (pp. 161-180). Hoboken, New Jersey: John Wiley & sons, Inc. https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470939376.ch3
Burke, D. (2014). Why isn't everyone an evolutionary psychologist? Frontiers in Psychology, 5: 910. https://doi. https://www.frontiersin.org/articles/10.3389/fpsyg.2014.00910/full DOI: https://doi.org/10.3389/fpsyg.2014.00910
Chiappe, D. & Gardner, R. (2011). The modularity debate in evolutionary psychology. Theory and Psychology, 22(5), 669-682. https://journals.sagepub.com/doi/10.1177/0959354311398703 DOI: https://doi.org/10.1177/0959354311398703
Colombo, M. (2013). Moving forward (and beyond) the modularity debate: A network perspective. Philosophy of Science, 80(3), 356-377. http://www.jstor.org/stable/10.1086/670331 DOI: https://doi.org/10.1086/670331
Davis, T., & Poldrack, R. A. (2013). Mesuaring neural representations with fMRI: Practices and pitfalls. Annals of th New York Academy of Sciences, 1296, 108-134. doi: https://pubmed.ncbi.nlm.nih.gov/23738883/ DOI: https://doi.org/10.1111/nyas.12156
Firestone, C., & Scholl, B. J. (2015). Cognition does not affect perception: Evaluating the evidence for ‘top-down’ effects. Behavioral and Brain Sciences, 20, 1-77. doi: https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/abs/cognition-does-not-affect-perception-evaluating-the-evidence-for-topdown-effects/920E2AE74C642DD3CB3FA8160EA1D84A
Fodor, J. (2001). The mind doesn´t work that way. The scope and limits of computational psychology. Cambridge, MA: MIT Press. https://mitpress.mit.edu/books/mind-doesnt-work-way DOI: https://doi.org/10.7551/mitpress/4627.001.0001
Gamond, L., George, N., Lemaréchal, J-D., Hugueville, L., Adam, C., & Tallon-Baudry, C. (2011). Early influence of prior experience on face perception. NeuroImage, 54, 1415–1426. doi: DOI: https://doi.org/10.1016/j.neuroimage.2010.08.081
Gilbert, C. D., & Li, W. (2013). Top-down influences on visual processing. Nature Reviews. Neuroscience, 14(5), 350–363. https://pubmed.ncbi.nlm.nih.gov/23595013/ DOI: https://doi.org/10.1038/nrn3476
Hansen, T., Olkkonen, M., Walter, S. & Gegenfurtner, K. R. (2006). Memory modulates color appearance. Nature Neuroscience, 9(11), 1367 – 1368. doi: https://pubmed.ncbi.nlm.nih.gov/17041591/ DOI: https://doi.org/10.1038/nn1794
Hsieh, P. J., Vul, E., & Kanwisher, N. (2010). Recognition alters the spatial pattern of fMRI activation in early retinotopic cortex. Journal of Neurophysiology, 103, 1501–1507. doi: https://pubmed.ncbi.nlm.nih.gov/20071627/ DOI: https://doi.org/10.1152/jn.00812.2009
Kok, P., Jehee, J. F. M., & de Lange F. P. (2012). Less is more: Expectation sharpens representations in the primary visual cortex. Neuron, 75(2), 265-270. doi: https://pubmed.ncbi.nlm.nih.gov/22841311/ DOI: https://doi.org/10.1016/j.neuron.2012.04.034
Kok, P., Brouwer, G. J., van Gerven, M. A. J. & de Lange, F. P. (2013). Prior expectations bias sensory representations in visual cortex. The Journal of Neuroscience, 33(41),16275–16284. doi: https://pubmed.ncbi.nlm.nih.gov/22841311/ DOI: https://doi.org/10.1523/JNEUROSCI.0742-13.2013
Lachaux, J. Ph., Rudrauf, D., & Kahane, P. (2003). Intracranial EEG and human brain mapping. Journal of Physiology, 97, 613-628. doi: https://pubmed.ncbi.nlm.nih.gov/15242670/ DOI: https://doi.org/10.1016/j.jphysparis.2004.01.018
Lee, T.S., & Mumford, D. (2003). Hierarchical bayesian inference in the visualcortex. The Journal of Optical Society of America A. Optics and Image Science and Vision, 20, 1434–1448. doi: https://www.osapublishing.org/josaa/abstract.cfm?uri=josaa-20-7-1434 DOI: https://doi.org/10.1364/JOSAA.20.001434
Levin, D. T., & Banaji, M. R. (2006). Distortions in the perceived lightness of faces: The role of race categories. Journal of Experimental Psychology: General, 35(4), 501–512. doi: https://sites.fas.harvard.edu/~mrbworks/articles/2006_JEPG.pdf DOI: https://doi.org/10.1037/0096-3445.135.4.501
Macpherson, F. (2012). Cognitive penetration of color experience: Rethinking the issue in light of an indirect mechanism. Philosophy and Phenomenological Research, 84(1), 24-62. doi: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1933-1592.2010.00481.x DOI: https://doi.org/10.1111/j.1933-1592.2010.00481.x
Macpherson, F. (2017). The relationship between cognitive penetration and predictive coding. Consciousness and Cognition, 47, 6–16. doi: https://www.sciencedirect.com/science/article/pii/S1053810016300496 DOI: https://doi.org/10.1016/j.concog.2016.04.001
Marchi, M., & Newen, A. (2015). Cognitive penetrability and emotion recognition. Frontiers in Psychology, 6, 828. doi: https://www.frontiersin.org/articles/10.3389/fpsyg.2015.00828/full DOI: https://doi.org/10.3389/fpsyg.2015.00828
Muckli, L., & Petro, L. S. (2013). Network interactions: non‐geniculate input to V1. Current Opinion in Neurobiology, 23(2), 195–201. doi: https://www.sciencedirect.com/science/article/pii/S0959438813000366 DOI: https://doi.org/10.1016/j.conb.2013.01.020
Newen, A., & Vetter, P. (2017). Why the cognitive penetration of our perceptual experience is still the most plausible account. Consciousness and Cognition, 47, 26-37. https://pubmed.ncbi.nlm.nih.gov/27667320/ DOI: https://doi.org/10.1016/j.concog.2016.09.005
Nienborg, H., & Roelfsema, P. R. (2015). Belief states as a framework to explain extra-retinal influences in visual cortex. Current Opinion in Neurobiology, 32, 45–52. doi: https://www.sciencedirect.com/science/article/pii/S095943881400213X DOI: https://doi.org/10.1016/j.conb.2014.10.013
Nusslock, R., Young, C. B., Pornpattananangkul, N., & Damme, K. S. F. (2015). Neurophysiological and neuroimaging techniques. En R. Cautinand, & S. O., Lilienfeld, The encyclopedia of clinical psychology (pp. 1-9). Hoboken, NJ: John Wiley & Sons. https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118625392.wbecp557 DOI: https://doi.org/10.1002/9781118625392.wbecp557
O’Callaghan, C., Kveraga, K., Shine, J. M., Adams Jr., R. B., & Bar, M. (2017). Predictions penetrate perception: Converging insights from brain, behaviour and disorder. Consciousness and Cognition, 47, 63–74. doi: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5764074/ DOI: https://doi.org/10.1016/j.concog.2016.05.003
Ogilvie, R., & Carruthers, P. (2016). Opening up vision: The case against encapsulation. Review of Philosophy and Psychology, 7, 721–742. doi: https://psycnet.apa.org/record/2015-54268-001 DOI: https://doi.org/10.1007/s13164-015-0294-8
Petro, L. S., Smith, F. W., Schyns, P. G. & Muckli, L. (2013). Decoding face categories in diagnostic subregions of primary visual cortex. European Journal of Neuroscience, 37, 1130–1139. doi: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3816327/ DOI: https://doi.org/10.1111/ejn.12129
Pinker, S. (2005). So How Does the Mind Work? Mind & Language, 20(1), 1–24. https://stevenpinker.com/files/pinker/files/so_how_does_the_mind_work.pdf https://stevenpinker.com/files/pinker/files/so_how_does_the_mind_work.pdf DOI: https://doi.org/10.1111/j.0268-1064.2005.00274.x
Pinto, Y., van Gaal, S., de Lange, F. P., Lamme, V. A. F., & Seth, A. K. (2015). Expectations accelerate entry of visual stimuli into awareness. Journal of Vision, 15(8), 13, 1-15. doi: https://jov.arvojournals.org/article.aspx?articleid=2337707 DOI: https://doi.org/10.1167/15.8.13
Pylyshyn, Z. (1999). Is vision continuous with cognition? The case for cognitive impenetrability of visual perception. The behavioral and brain sciences, 22(3), 341-423. doi: https://pubmed.ncbi.nlm.nih.gov/11301517/ DOI: https://doi.org/10.1017/S0140525X99002022
Raftopoulos, A. (2014). The cognitive impenetrability of the content of early vision is a necessary and sufficient condition for purely nonconceptual content. Philosophical Psychology, 27(5), 601–620. doi: https://www.tandfonline.com/doi/abs/10.1080/09515089.2012.729486 DOI: https://doi.org/10.1080/09515089.2012.729486
Raftopoulos, A. (2019). Pre-cueing, early vision, and cognitive penetrability. En C. Limbeck-Lilienau & F. Stadler, The Philosophy of perception (pp. 217-234). The Gruyter. https://www.degruyter.com/document/doi/10.1515/9783110657920-013/html DOI: https://doi.org/10.1515/9783110657920-013
Roelfsema, P. R., & deLange, F. P. (2016). Early visual cortex as a multiscale cognitive blackboard. Annual Review of Vision Science 2(1), 131-151. doi: https://www.annualreviews.org/doi/abs/10.1146/annurev-vision-111815-114443 DOI: https://doi.org/10.1146/annurev-vision-111815-114443
Samaha, J., Boutonnet, B., & Lupyan, G. (2016). How prior knowledge prepares perception: Prestimulus oscillations carry perceptual expectations and influence early visual responses. bioRvix, 076687. doi: https://www.biorxiv.org/content/10.1101/076687v1.full DOI: https://doi.org/10.1101/076687
Shaughnessy, J. J., Zeichmeister, E. B., & Zeichmeister, J. S. (2007). Métodos de Investigación en Psicología. México: McGraw-Hill.
Shettleworth, S. (2012). Modularity, comparative cognition and human uniqueness. Philosophical Transactions of the Royal Society of London. Series B. Biological Science, 367, 2794–2802 doi: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3427548/ DOI: https://doi.org/10.1098/rstb.2012.0211
Stokes, D. (2013). Cognitive penetrability of perception. Philosophy Compass, 8(7), 646–663. doi: https://onlinelibrary.wiley.com/doi/abs/10.1111/phc3.12043 DOI: https://doi.org/10.1111/phc3.12043
Stokes, D. R., & Bergeron, V. (2015). Modular architectures and informational encapsulation: A dilemma. European Journal for Philosophy of Science, 5(3), 315-338. doi: https://www.researchgate.net/publication/272377410_Modular_architectures_and_informational_encapsulation_a_dilemma DOI: https://doi.org/10.1007/s13194-015-0107-z
Seriès, P., & Seitz, A. R. (2010). Learning what to expect (in visual perception). Frontiers in Human Neuroscience, 7:668. https://www.frontiersin.org/articles/10.3389/fnhum.2013.00668/full DOI: https://doi.org/10.3389/fnhum.2013.00668
Vetter P., & Newen, A. (2014).Varieties of cognitive penetration in visual perception. Consciousness and Cognition, 27, 62–75. doi: https://pubmed.ncbi.nlm.nih.gov/24836978/ DOI: https://doi.org/10.1016/j.concog.2014.04.007